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ABSTRACT
Wavelet-based image coders like the JPEG2000 standard
are the state of the art in image compression. Unlike tra-
ditional image coders, however, their performance depends
to a large degree on the choice of a good wavelet. Most
wavelet-based image coders use standard wavelets that are
known to perform well on photographic images. However,
these wavelets do not perform as well on other common
image classes, like scanned documents or fingerprints. In
this paper, a method based on the coevolutionary genetic
algorithm introduced in [11] is used to evolve specialized
wavelets for fingerprint images. These wavelets are com-
pared to the hand-designed wavelet currently used by the
FBI to compress fingerprints. The results show that the
evolved wavelets consistently outperform the hand-designed
wavelet. Using evolution to adapt wavelets to classes of im-
ages can therefore significantly increase the quality of com-
pressed images.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation—Wavelets
and Fractals; I.4.2 [Computing Methodologies]: Image
Processing and Computer Vision—Compression (Coding);
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.2.8 [Computing Methodologies]: Artificial
Intelligence—Problem Solving, Control Methods, and Search;
G.1.6 [Numerical Analysis]: Global Optimization

General Terms
Algorithms, Experimentation, Performance
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Wavelets, Image Compression, Lifting, Genetic Algorithms,
Coevolution
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1. INTRODUCTION
Image compression is one of the most important and suc-

cessful applications of the wavelet transform. Mature wavelet-
based image coders like the JPEG2000 standard [15] are
available, gaining in popularity, and easily outperform tradi-
tional coders based on the discrete cosine transform (DCT)
like JPEG [25].

Unlike in DCT-based image compression, however, the
performance of a wavelet-based image coder depends to a
large degree on the choice of the wavelet. This problem
is usually handled by using standard wavelets that are not
specially adapted to a given image, but that are known to
perform well on photographic images.

However, many common classes of images do not have the
same statistical properties as photographic images, such as
fingerprints, medical images, scanned documents, and satel-
lite images. The standard wavelets used in image coders
often do not match such images, resulting in decreased com-
pression or image quality. Moreover, non-photographic im-
ages are often stored in large databases of similar images,
making it worthwile to find a specially adapted wavelet for
them. As Chris Brislawn, one of the architects of WSQ [13],
the FBI’s standard for fingerprint compression, states [2]:

“Choosing wavelets for image coding applications
is still a somewhat inexact science, depending on
a lot of trial and error. There are a few “stan-
dard” wavelet families [...] that seem to work
well for image coding, although that is not a task
for which they were specifically designed. In the
future we hope to be able to design wavelets (or
wavelet-like filter banks) that are optimized for a
specific application, like fingerprints. Until then
we’ll probably stick with proven performers [...].”

In this paper, a coevolutionary genetic algorithm based on
Enforced Sub-Populations [11, 9] and a mathematical tech-
nique called Lifting is used to find wavelets that are spe-
cially adapted to a particular class of images. The approach
is tested in the fingerprint compression domain, which pro-
vides a systematic comparison to other current approaches.
The wavelets found by the GA are tested in a state-of-the-art
image coder, and compared with standard wavelets, includ-
ing the winner of a competition held by the FBI to find the
best wavelet for fingerprint compression [13]. The evolved
wavelets turn out consistently better, demonstrating that
evolutionary discovery can outperform human design in an
important task.

The remainder of this paper is structured as follows. The
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Figure 1: An example wavelet function. This
wavelet is the Antonini 9/7 wavelet [1], also known
as the FBI wavelet, because the FBI uses it to com-
press fingerprints [13].

next section gives a brief tour of wavelet-based image com-
pression. Section 4 describes the algorithm and the evalua-
tion function used. Section 5 reports experimental results,
and section 6 discusses future directions for the wavelet evo-
lution approach.

2. BACKGROUND
Both wavelet theory and wavelet-based image compres-

sion are complex and evolving subjects. This section gives
a brief high-level overview of these topics. For more details
on classical wavelet theory, see [14]. In addition, [6] con-
tains an introduction to lifting, and [7] covers the basics of
wavelet-based image compression.

2.1 Wavelets
Wavelets are a mathematical tool for representing and ap-

proximating functions hierarchically. At the heart of wavelet
theory, there is a single function ψ, called the mother wavelet.
Any function can be represented by superimposing trans-
lated and dilated versions of ψ, denoted by ψj,i, where i and
j are the translation and dilation parameter. We are focus-
ing on the discrete case where i and j only take on integer
values. The ψj,i can be computed from the mother wavelet
as

ψj,i(x) = 2
j
2 ψ(2j

x− i). (1)

Figure 1 shows an example wavelet, and figure 2 shows a
translated and dilated version of that wavelet.

All the translates of ψ for a specific dilation j span a
function space Wj :

Wj = span{ ψj,i | i ∈
�
}. (2)

The Wj are called wavelet spaces or detail spaces, because
each of them adds a level of detail to the wavelet represen-
tation of a function. All of the detail spaces combined form
a basis in which any function can be expressed.

The process of decomposing a function into wavelet coeffi-
cients (a scaling factor for each of the ψj,i) is called wavelet
transform. If the parameters i and j take on dicrete values,
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Figure 2: A translated and dilated version of the
Antonini wavelet in figure 1. The Discrete Wavelet
Transform (DWT) expresses the input data as a
weighted sum of such translates and dilates.

we have a discrete wavelet transform or DWT, essentially
leading to a finite number of coefficients.

In order to compute the DWT of a function f , we need to
find one wavelet coefficient γj,i for each ψj,i, such that

f =
�
j,i

γj,iψj,i. (3)

If a wavelet basis (i.e. the set of all ψj,i) is orthogonal, then
the γj,i are given by

γj,i = 〈f, ψj,i〉 = � ∞

−∞

f(x)ψj,i(x)dx, (4)

where the bar denotes the complex conjugate. Otherwise,

a dual wavelet �ψ is necessary such that ψ and �ψ together
are biorthogonal, which basically means that the transform

must be invertible. We can then use �ψ for determining the
wavelet coefficients (equation 4), and the original wavelet
for the inverse DWT (equation 3). Note that an orthogonal
wavelet is just a special case of a biorthogonal one where�ψ = ψ.

2.2 Filters and the Fast Wavelet Transform
Computing a wavelet transform in the way just described

is expensive and cumbersome. However, an algorithm called
the Fast Wavelet Transform or FWT allows computing the
wavelet coefficients by recursively applying a pair of digital
filters to the data, much like the Fast Fourier Transform
reduces a discrete fourier transform to computing a few finite
sums.

A digital filter can be defined by giving a sequence of real
numbers called filter coefficients. It is applied by convolution
with an input sequence. A filter is said to have finite impulse
response (FIR), if its coefficients are non-zero only on a finite
range. A FIR filter can be represented by a finite number of
coefficients and the index of the leftmost non-zero coefficient.

The filter pair used in the FWT uniquely determines the
mother wavelet ψ and also (in the biorthogonal case) the

dual wavelet �ψ. In order to define a valid wavelet transform,
a filter pair must be complementary, which is the same as
saying that the associated wavelet must be biorthogonal.
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Ensuring that a filter pair is complementary and that the
individual filters are finite are the basic contraints in wavelet
design.

2.3 Lifting
The Lifting scheme, introduced by Sweldens [22] in 1996,

offers an effective way to construct complementary filter
pairs. A finite filter, called a lifting step, is used to gen-
erate a new filter pair from an existing pair. Multiple lifting
steps can be applied consecutively. In [6], Sweldens and
Daubechies proved two important properties of lifting:

• Lifting preserves biorthogonality, i.e. if the original
filter pair is complementary, then so is the new pair,
no matter what lifting step is applied.

• Any wavelet with finite filters can be expressed as
a sequence of lifting steps. Starting with the trivial
wavelet transform (called the Lazy Wavelet), all possi-
ble wavelets can be reached by applying a finite num-
ber of finite-length lifting steps.

These two properties make lifting a powerful tool for con-
structing new wavelets: Starting from a known complemen-
tary filter pair, other complementary pairs that are better
adapted to the task at hand can be generated by applying
lifting steps.

2.4 Wavelet-based Image Compression
All modern image coders are transform coders, i.e. they

have the structure shown in figure 3.
Transform coders first apply an invertible transform to

the image data in order to decorrelate it. Examples of such
transforms are the discrete cosine transform (the basis for
JPEG compression), and the discrete wavelet transform, the
basis for JPEG2000 and other wavelet coders. The perfor-
mance of a transform coder depends largely on how well the
transform decorrelates the signal. A well decorrelated signal
consists mainly of coefficients close to zero.

Control

Trans−
formation zation

Quanti− Entropy
Coding

RD−

0100110...

Figure 3: The structure of a transform coder. The
signal is first decorrelated using an invertible trans-
form, then quantized and entropy coded. The rate-
distortion (RD) unit controls the quantization to
minimize the distortion within the available bit rate.
The performance of a transform coder depends on
how well the transform decorrelates the image data.

After the transform step, the coefficients are quantized,
i.e. expressed using symbols from a finite alphabet, and
entropy coded, using as little space or bandwidth as possible.
The rate-distortion (RD) unit controls the quantization in
order to achieve minimal distortion within the available bit
rate.

All three steps of an image coder have an impact on the
image quality achieved for a given compression ratio. In
particular, a better transform results in better compression
performance.

3. RELATED WORK
Adaptive wavelet bases have been an active research area

since the early 1990s. Traditional approaches are based on
dictionary methods, where a basis is selected from an over-
complete set of predefined functions called atoms. Examples
of such methods are the best basis algorithm [5] and wavelet
packets [26]. In [16] and [18], evolutionary algorithms are
used for adaptive dictionary methods. Dictionary methods
are in a sense orthogonal to the approach used in this paper,
and could be easily combined with it.

Several stochastic optimization techniques have been ap-
plied to the design of wavelets. Monro and Sherlock [20] use
simulated annealing to find wavelets with balanced uncer-
tainty in space and frequency. Hill et al. [12] used a genetic
algorithm to optimize the parameters of a windowed trigono-
metric function that can be used in a continuous wavelet
transform.

The lifting technique has provided new ways to adapt
wavelets to the data being transformed. The common ap-
proach is to choose locally between a class of lifting steps
while transforming an image. For example Claypoole et al.
[3] used this approach to adapt wavelets to a given signal by
optimizing data-based prediction error criteria.

Genetic algorithms, combined with the lifting technique,
offer a way to find a single wavelet specifically adapted to
a class of images based on real-world compression perfor-
mance. A first version of such an algorithm was introduced
in [11], and applied to a simple signal compression problem.
In this paper, the method is shown to be effective in the
more challenging task of compressing fingerprint images.

4. EVOLVING WAVELETS
In section 2.3, two useful properties of lifting were men-

tioned:

• Lifting preserves biorthogonality, and

• any wavelet can be expressed as a sequence of lifting
steps.

These two properties make sequences of lifting steps an ef-
fective representation for wavelets in a genetic algorithm,
because (1) any random sequence of lifting steps will encode
a valid (i.e. biorthogonal) wavelet, and (2) any wavelet can
be represented using the genetic code. In this section, a
coevolutionary genetic algorithm that evolves wavelets en-
coded as lifting steps will be described.

Algorithm
The coevolutionary GA used is closely related to the En-
forced Sub-Populations (ESP) neuroevolution algorithm in-
troduced by Gomez and Miikkulainen [9]. ESP evolves a
number of populations of individual neurons in parallel. In
the evaluation phase, ESP repeatedly selects one neuron
from each sub-population to form candidate networks. The
fitness of a particular neuron is the average fitness of all
networks in which it participated.

This concept can be easily applied to wavelet evolution:
Several populations of lifting steps are evolved in parallel,
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Wavelet-ESP

input: N, the number of sub-populations
L, the lengths of the lifting filters
M, the size of each sub-population
P, the mutation rate

1. Initialize

Create M filters of length L for each of the N
sub-populations, and randomize them.

2. Evaluate

Select N lifting steps, one from each sub-population,
and evaluate the resulting wavelet. Add the fitness to
the cumulative fitness of all participating steps. Repeat
until each step has been evaluated 10 times on average.

3. Recombine

Rank the lifting steps in each sub-population by their
average fitness. Each step in the top quartile is
recombined with a higher-ranking step. The offspring is
mutated with probability P and replaces the
lowest-ranking half of each sub-population.

4. Repeat

Repeat the Evaluate-Recombine cycle for a fixed
number of generations.

Figure 4: The ESP algorithm applied to wavelets.
Several populations of lifting steps are evolved in
parallel, and are combined in the evaluation phase
to form wavelets.

and are randomly combined to form wavelets, which are
then evaluated. No migration or crossover occurs between
sub-populations. Figure 4 describes the algorithm in detail.

Representation
A lifting step is represented as a fixed-length sequence of
floating point numbers for the filter coefficients, and a sin-
gle integer for the leftmost index of the filter. Using a fixed
number of fixed-length steps limits the number of wavelets
that can be represented. However, it also limits the length
of the wavelet filters, which is a desirable effect. Also, most
wavelets used in practice can be factored into a small num-
ber of short lifting steps [6], so this limitation is unlikely to
interfere with finding good solutions.

Initialization
Each chromosome is initialized by setting the values of the
coefficients to random values from a gaussian distribution
with mean 0 and variance 0.5, and setting the leftmost index
of each filter to a random integer between -2 and 2. These
settings reflect the values commonly found in lifting steps.

Crossover
The crossover operator performs simple one-point crossover
on the coefficients. The integers representing the leftmost
indices of the parent filters are randomly assigned to the
children.

Mutation
A chromosome is mutated by adding low-variance gaussian
noise to a random filter coefficient and/or adding ±1 to the
integer representing the leftmost index.

Fitness Evaluation
In image compression, the ideal measure of fitness would be
the performance in an actual transform coder as described in
section 2.4. However, there are two problems with this ap-
proach. First, evaluating a wavelet using a transform coder
is prohibitively expensive. Second, in order to make a fair
comparison between two wavelets, either the available num-
ber of bits needs to be fixed and the resulting distortion used
as a fitness measure, or vice versa. Both options are inexact
and expensive for actual transform coders.

Evaluation Function

input: D, the input data
W, a candidate wavelet
R, the compression ratio

return: The fitness of W.

1. Transform

Transform D using the wavelet W.

2. Compress

Sort the resulting wavelet coefficients. Keep only the
largest R × |D|. Set the rest to zero.

3. Reconstruct

Perform an inverse transform using W and the altered
wavelet coefficients.

4. Measure the Image Quality

Measure the resulting image quality (peak signal to
noise ratio), and return it.

Figure 5: The evaluation function is an idealized
version of a transform coder: Instead of quantizing
and entropy-coding the wavelet coefficients, it uses
only part of the coefficients for reconstruction and
sets the rest to zero.

Figure 5 shows a definition of the evaluation function.
It is an idealized version of a transform coder: Instead of
quantizing and entropy-coding the wavelet coefficients, it
uses only a certain percentage of the coefficients for recon-
struction and sets the rest to zero. This approach is much
less expensive and allows choosing the compression ratio ex-
actly, which means that the resulting distortion can be used
directly as a fitness measure. Villasenor et al. [24] have used
a similar but even simpler method to evaluate wavelets with
good results.

Figure 6 compares the performance predicted by the eval-
uation function to the actual performance in a transform
coder, using wavelets tested during the experiments reported
in the next section. The figure shows that the prediction
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Figure 6: The relation between the performance
predicted by the evaluation function (figure 5), and
real-world performance in a transform coder. Each
point represents a wavelet encountered in the ex-
periments reported in section 5.

of the real-world performance is accurate, although in a few
cases, the evaluation function underestimates the actual per-
formance.

5. EXPERIMENTS
In this section, the wavelet evolution method described in

the last section is applied to the compression of fingerprint
images like the ones shown in figure 7.

5.1 Task and data
Fingerprint compression is both a popular research prob-

lem in image compression and an important application in
its own right. The FBI alone has over 200 million fingerprint
cards on file, occupying an acre of filing cabinets[2]. Re-
cently, they have begun to store fingerprints electronically.
Between 30,000 and 50,000 new cards are digitized and com-
pressed every day, using a wavelet-based image coder and
the so called ’FBI wavelet’, considered to be the best known
wavelet for fingerprint compression [13]. The FBI wavelet
(shown in figure 1) therefore provides a challenging bench-
mark with which to compare the evolved wavelets.

For the experiments reported in this section, the first set
of fingerprints from the FVC2000 finger print verification
competition [19] was used. The data set contains 80 black-
and-white images acquired electronically using an optical
sensor (“Secure Desktop Scanner” by KeyTronic). The size
of each image is 300 by 300 pixels, at 500 dpi resolution.

5.2 Methodology

Cross-Validation
The algorithm was evaluated using leave-one-out cross val-
idation on the 80 available images, i.e. each of the images
was used once as a test image, and 79 times as part of the
training set. Each of the 80 runs took approximately 45
minutes on a 3GHz Xeon processor.

Figure 7: The FBI digitizes and compresses between
30,000 and 50,000 new fingerprint cards every day.
The images shown are part of the data set used
in the FVC2000 fingerprint verification competition
[19], and were also used in the reported experiments.

Parameters

Preliminary experiments were conducted to determine the
best parameter settings. The algorithm turned out to be
very robust; similar results were obtained for a wide range
of parameters.

The following parameters were used for the reported re-
sults: The population size was 150 for each sub-population,
which means that 1500 evaluations took place in each gener-
ation. The algorithm evolved 7 sub-populations in parallel,
each of which contained lifting steps of length 4. The mu-
tation rate was set to 0.4. The compression ratio was 16:1
both for fitness evaluation and the evaluation on the test
image. The evolution ran for 500 generations each time.

Quality Analysis

After each generation, the best wavelet found so far was
used to compress the test image. The image coder was the
implementation of the Set Partitioning in Hierarchical Trees
(SPIHT) algorithm [21] in J. E. Fowler’s QccPack, an open-
source library of state-of-the-art data compression routines
[8]. The performance on the test set can therefore be re-
garded as an accurate measure of real-world performance.

The following analysis relies on error images and peak
signal-to-noise ratio (PSNR) as measures of image quality.

The PSNR is a simple logarithmic measure for the dif-
ference between two images. It is commonly used in image
compression as a quantitative measure for the compression
error introduced by a compression algorithm. A PSNR of 30
decibel is commonly regarded as a reasonable lower quality
limit, and a PSNR above 50dB is regarded as “visually per-
fect”, i.e. the compressed image is visually indistinguishable
from the original. A difference of 0.4–0.5 dB between two
algorithms is usually visible.

Error images are obtained by subtracting the compressed
image pixel-by-pixel from the original. Error images are
necessary because subtle differences in quality between com-
pressed images are very hard to judge visually. In print, even
substantial quality improvements are unlikely to be clearly
visible. Separating the error from the image data makes
comparisons much easier.
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Generation 1 Generation 10 Generation 20 Generation 50

Figure 8: The progress of evolution during a typical run is shown at generations 1, 10, 20 and 50. The top
row shows the winner wavelets, and the bottom rows shows the resulting compressed test image at 16:1. The
first generation produced a more or less random wavelet that performs poorly. Over the next generations,
both image quality and the smoothness of the wavelets increase sharply. The performance keeps increasing
after generation 50 (figure 9), although the differences are less obvious.

5.3 Results
Figure 8 illustrates the progress of evolution during a typ-

ical run of the algorithm. The winner wavelets and the re-
sulting compressed test images are shown after generations
1, 10, 20, and 50. The winner of the first generation is highly
discontinuous and performs poorly. As the wavelets adapt
to the structure of the data, they become smoother, and the
image quality increases sharply. The performance keeps im-
proving well beyond generation 50, although the differences
in image quality are less obvious.

Figure 9a shows the learning curve of the algorithm, i.e.
the performance on the test images, averaged over all 80
runs of the algorithm. The horizontal lines show the aver-
age performance of the FBI wavelet and a baseline JPEG
coder. The curve shows that the evolved wavelets achieve an
average improvement of 0.75dB over the FBI wavelet. The
FBI wavelet in turn outperforms JPEG by approximately
2.5dB. Alternatively, a 0.75dB quality improvement would
translate into a 15-20% decrease in space requirements for
the same image quality.

Figure 9b compares the evolved wavelets to the FBI wavelet
directly. The dotted line shows the lower limit of the 95%
confidence interval. At 30 generations, the evolved wavelets
perform the same on average as the FBI wavelet. By gen-
eration 40, there is a 95% probability of finding a better
wavelet than the FBI wavelet. After 500 generations, the
evolved wavelets are 95% certain to outperform the FBI
wavelet by more than 0.45dB. At this point, the evolved
wavelet is significantly better with p < 10−4, according to a
paired t-test.

Figure 10 gives a visual impression of the increase in image
quality achieved by the evolved wavelets. The top row shows
a detail of the leftmost fingerprint in figure 7, compressed at
16:1 using the wavelet found by the GA, the FBI wavelet,

and a baseline JPEG coder. Both wavelets perform much
better than the JPEG coder: The blocking artifacts that
often accompany JPEG-encoded images are clearly visible.
The difference between the two wavelets is clearer in the
bottom row, which shows only the error introduced by each
compression method. The error image of the evolved wavelet
is dimmer than that of the FBI wavelet, indicating a more
accurate reconstruction of the original image. The constrast
of the error images was increased uniformly to enhance the
visibility of the non-zero differences.

6. DISCUSSION AND FUTURE WORK
The results presented in the previous section show that

evolving wavelets for classes of images can considerably im-
prove the performance of an image coder. The evolved
wavelets substantially outperformed the hand-optimized FBI
wavelet in every single run of the algorithm.

Many other image classes, including medical images, struc-
tural drawings, digitized documents, and satellite images
have the characteristics that would make it useful to evolve
specialized wavelets for them: They are often stored in large
databases of similar images, they do not have the same sta-
tistical structure as photographs, and they have regularities
of their own that standard wavelets cannot fully exploit.
The results presented in this paper suggest that similar im-
provements should be possible in these cases. Other applica-
tions of the same algorithm, like lossless image compression,
compression of volumetric data or wavelet-based multi-grid
solvers for partial differential equations, are also possible in
the future.

The algorithm itself could also be extended to evolve more
powerful classes of wavelets. The design of non-separable
and nonlinear wavelet transforms has received much atten-
tion in the literature recently (e.g. [10, 4, 23]). The algo-
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Figure 9: Learning curve of the wavelet evolution algorithm. In each generation, the best wavelet found was
used in a state-of-the-art image coder. Plot (a) shows the resulting image quality on the test image, averaged
over 80 runs. The horizontal lines show the performance of the FBI wavelet and a baseline JPEG coder.
Plot (b) shows the average quality improvement over the FBI wavelet. The dotted line is the lower limit of
the 95% confidence interval. After 500 generations, the evolved wavelets are 95% certain to outperform the
FBI wavelet by at least 0.45dB, a difference usually visible to the naked eye.

rithm used in this paper could be adapted to evolve non-
separable and nonlinear wavelets without major changes.

7. CONCLUSIONS
In this paper, a coevolutionary GA was used to evolve

specialized wavelets for image compression, using fingerprint
images as a test domain. The evolved wavelets consistently
outperform the wavelet used by the FBI in this task. These
results show that evolving wavelets adapted to specific im-
age classes can significantly increase the compression perfor-
mance of an image coder. They also demonstrate that evolu-
tionary discovery can outperform significant human design
effort in an important task.
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